Researchers at MIT have devised an algorithm that predicts when an oncoming car is likely to run a red light. Based on parameters such as the vehicle’s deceleration and its distance from a light, the group was able to determine which cars were potential “violators” — those likely to cross into an intersection after a light has turned red — and which were “compliant.”

The researchers tested the algorithm on data collected from an intersection in Virginia, finding that it accurately identified potential violators within a couple of seconds of reaching a red light — enough time, according to the researchers, for other drivers at an intersection to be able to react to the threat if alerted.

Jonathan How, the Richard Cockburn Maclaurin Professor of Aeronautics and Astronautics at MIT, says “smart” cars of the future may use such algorithms to help drivers anticipate and avoid potential accidents. “Even though your light might be green, it may recommend you not go, because there are people behaving badly that you may not be aware of.”

How says that in order to implement such warning systems, vehicles would need to be able to “talk” with each other, wirelessly sending and receiving information such as a car’s speed and position data. Such vehicle-to-vehicle (V2V) communication, he says, can potentially improve safety and avoid traffic congestion.

The U.S. Department of Transportation (DOT) is exploring V2V technology, along with several major car manufacturers — including Ford Motor Company, which this year has been road-testing prototypes with advanced Wi-Fi and collision-avoidance systems.

Aoude and colleagues applied their algorithm to data from more than 15,000 approaching vehicles at the intersection, and found that it was able to correctly identify red-light violators 85 per cent of the time — an improvement of 15 to 20 per cent over existing algorithms.  The researchers were able to predict, within a couple of seconds, whether a car would run a red light.

The researchers are now investigating ways to design a closed-loop system — to give drivers a recommendation of what to do in response to a potential accident — and are also planning to adapt the existing algorithm to air traffic control, to predict the behavior of aircraft.